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Abstract

We present an algorithm to factor multivariate polynomials over algebraic number fields that is
polynomial-time in the degrees of the polynomial to be factored. The algorithm is an immediate
generalization of the polynomial-time algorithm to factor univariate polynomials with rational
coefficients.

1. Introduction

We show that the algorithm from [7] to factor univariate polynonuals with rational coefficients
can be generalized to multivariate polynomials with coefficients in an algebraic number field. As
a result we get an algorithm that is polynomial-time in the degrees and the coefficient-size of the
polynomial to be factored.

An outline of the algorithm is as follows. First the polynomial f € Q(a)[X;, X,,..., X;] is
evaluated in a suitably chosen integer point (X;=s3,X3=s3,...,X; =5§). Next, for some prime
number p, a p-adic irreducible factor 4 of the resulting polynomial f € @(a)[X,] is determined
up to a certain precision. We then show that the irreducible factor 4 of f for which # is a p-
adic factor of /1, belongs to a certain integral lattice, and that &, is relatively short in this lattice.
This enables us to compute this factor 4y by means of the so-called basis reduction algorithm (cf.
[7: Section 1]).

As [7] is easily available, we do not consider it to be necessary to recall the basis reduction
algorithm here; we will assume the reader to be familiar with this algorithm and its properties.

Although the algorithm presented in this paper is polynomial-time, we do not think it is a
useful method for practical purposes. Like the other generalizations of the algorithm from [7],
which can be found in [8; 9; 10; 11], the algorithm will be slow, because the basis reduction algo-
rithm has to be applied to huge dimensional lattices with large entries. In practice, a combina-
tion of the methods from [6], [14], and [15] can be recommended (cf. [6]).

2. Preliminaries

In this section we introduce some notation, and we derive an upper bound for the coefficients of
factors of multivariate polynomials over algebraic number fields.

Let the algebraic number field Q(«) be given as the field of rational numbers @ extended
by a root a of a prescribed minimal polynomial F € Z[T] with leading coefficient equal to one; ie.
Q(a) =~ Q[T)/(F). Similarly, we define Z[a] = Z[T]/(F) as a ring of polynomials in « over Z of
degree <<I, where I denotes the degree 6F of F.

Let f € Q(a)[X}, Xy,..., X, ] be the polynomial to be factored, with the number of variables
t =2. By §;f =n; we denote the degree of f in X, for 1 <i <t. We often use n instead of
ni.. We put N; =]f-;(n+1), and N =N;. Let leo(f)=f. For 1<i <t we define
Ie; () € Q@)X +1>X; +2,--» X, ] as the leading coefficient with respect to X; of ic; _y(f), and we
put le(f) =Ic,(f). Finally, we define the content cont(f) € Q(&)[Xy, X3,...,X,] of f as the
greatest common divisor of the coefficients of f with respect to X;. Without loss of
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generality we may assume that 2 <n; <n; 4, for 1 <i <¢, that f is monic (ie. Ic(f) = 1), and
that §;cont(f) =0 for 2<i <.

Let d € Z.y be such that f € —-Z[a][Xl,Xz, ,X,], and let discr(F) denote the discrim-
inant of F. It is well-known (cf. [15]) that if we take D = d |discr(F)|, then all monic factors of
f are in ——Z[a][X,,Xz, . X;] (in fact it is sufficient to take D =d-s, where s is the largest
integer such that s divides discr(F), but this integer s might be too difficult to compute).

We now introduce some notation, similar to [8: Section 1]. Suppose that we are given a
prime number p such that

2.1 p does not divide D.
For G =3,a;T €Z[T] we denote by G, or Gmodp' the polynomial 3 (a; modp’)T* €

(Z/p'Z)[T), for any positive integer /. Suppose furthermore that we are given some positive
integer k, and that p is chosen in such a way that a polynomial H € Z[T] exists such that

2.2) H has leading coefficient equal to one,
(2.3) H, divides Fy in (Z/p* Z)[T),
(2.4) H | is irreducible in (Z/p Z)[T],
2.5) (H)* does not divide F; in (Z/p Z)[T).

Clearly H, divides Fy in (Z/p Z)[T], and 0 <8H <1I. In the sequel we will assume that condi-
tions (2.1), (2.2), (2.3), (2.4), and (2.5) are satisfied.

By F, we denote the finite field containing ¢ =p% elements. From (2.4) we have
F, ~(Z/pZ)[T]/(H1) ~{ BHO lg,af: a; €Z/pZ), where al-—Tmod(Hl) is a zero of H,.
Furthermorc we put W, (F,)= @/p* DTV (H) = {8 a;af: a; € Z2/p*Z), where oy =
Tmod(H,) is a zero of H,. Notice that W, (F,) 1s a ring containing q" elements, and that
WI(F )=F,. For a € Z[a] we denote by a mod I H)e W) (F,) the result of the canonical
mappmg from Z[a] Z[T}/(F) to W\(F,)= (Z/p'I)[TV/(H)) applied to a, for I =1,k. For
F=3% =X ——Z[a][Xl] we denote by #mod(p,H;) the polynomial 3,((D ~'modp’)a;)
mod(p’ H,))Xl € W (F,)[X,] (notice that D~ modp exists due to (2.1)).

We derive an upper bound for the height of a monic factor g of f. As usual, for
g = i iy i 2 G ,lja’X"X Xlre Q(a)[Xl,Xz, , X1, the height g .. is defined as
max|a;;, ;;|, and the length |g| as Ca’, ., J)"2 Similarly, for a polynomial » with complex
coefficients, we define its height h,, as the maximum of the absolute values of its complex
coefficients.

For any choice of a € {a,a,...,a;}, where ay,a5,...,a; are the conjugates of a, we can
regard g as a polynomial g, with complex coefficients. We define ligll as max; <; < ;(ga)max-
From [3] we have

gl < eZ="|i71I.
In [8: Section 4] we have shown that this leads to
2.6) Emax < €2 If Q= 1) ~V/2| F |11 disor(F)| ~%.

From [13] we know that the length |F| of F is an upper bound for the absolute value of the
conjugates of a, so that

-1
< fomax 2 | F ('
i=0

which yields, combined with (2.6),
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. I-1 )
@7 B < e o JI =DV F |1 discr(F)| % S | F |,
i=0

The upper bound for the height of monic factors of f, as given by the right hand side of (2.7),
will be denoted by B;. Because |discr(F)| =1, we find

(2.8) log By = O( é"i F1og f max + 1 log( | F|)).
i=1

3. Factoring multivariate polynomials over algebraic number fields

We describe an algorithm to compute the irreducible factorization of f in Q(a)[X,Xs, ..., X;]-

Let 54,53,...,5; € Z-( be a (t —1)-tuple of integers. For g € Q(a)[X}, Xy, ..., X;] we denote
by g; the polynomial g mod((X;—s2),(X3—s3),....(X; =5;)) € QX1 X; 41X 42, X, ]; L€
g 1is g with s; substituted for X;, for 2<i<j. Notice that §, =g and that g =
& —1mod(X; —[sl{). Weputg =g,.

Suppose that a polynomial # €Z[a][X,] is given such that
@B.1) k is monic,
(32 h mod(p*, Hy) divides f mod(p*¥, Hy) in W (F,)[X],
(3.3) h mod(p, H,) is irreducible in F,[X],
G4 (A mod(p, H ))* does not divide f mod(p, H ) in F,[X].

We put I =84, so 0<I<n. By h, E—Iljl[a][Xl,Xz,...,X,] we denote the unique, monic,
irreducible factor of f such that £ mod(p*, Hy) divides /o mod(p*, Hy) in Wy (F,)[X,] (cf. (3.2),
(33), (3.4)).

(B.5) Let m =my,myms,...,m; be a r-tuple of integers satisfying /<m <n and
0<m; <8lc;_((f) for 2<<i <1, and let M = 1+I3}_;m;N;;, (where of course N, ;=1).
We define L C(%)M as the lattice of rank M, consisting of the polynomials g €
%Z[a][Xl, Xy, ..., X, ] for which

® dig<m and ;g <nm for2<i<zy;

(i) If 8;lc; _(g) =m; for 1 <j <i, then §; 1 1lc;(g) <m; 4 for 1 <i <t

(iii) If 8;lc; _1(g)=m; for 1<i <¢, then lc(g) EZ;

@iv) k mod(p¥, H}.) divides § mod(p*, Hy) in Wy (F,)[X,].

Here M -dimensional vectors and polynomials satisfying conditions (i), (ii), and (iii), are identified
in the usual way (cf. [8: (2.6); 11: (2.2)]). For notational convenience we only give a basis for L
in the case that m; = n; for 2 <<i <t; the general case can easily be derived from this:

(Sp*eiXf: 0<j <8H,0<i <1}
U {Fo/ M H@X]: 8H <j <I,0<i<I}
U (po/hX{Th0<j<I,I<i<m)}
U {%aix{'ﬁz(x,—s,)"': 0<j<I,0<i;<m,0<i <n,
e

for2<r< t, (iz,i3,...,l't)7=(0,0,...,0),
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and (il,iz,i3,...,i,):;é(m,nz,n3,...,n,)}
15
U {X{n H X -—sr)n'}
r=2
(cf. [8: (2.6); 11: (2.19)], (2.2), and (3.1)).
(3.6) Proposition. Let b be a non-zero element of L and let

@37 By = [ Thbloay (1 +m)! | DN (14 Foy ™ ‘fIs :
Jor 1<j <t, where f,, denotes (f )™
Suppose that
(3.8) s; = ((n +m)n; +1)*B;
for2<j<t, and
(39) P = |F|IT a8

Then ged(f ,b) 1 in Q(@)[X;, Xg,-, X, ]

Proof. Denote by R = R(Df,Db) € Z[a][X;, X3,..., X,] the resultant of Df and Db (with respect
to the variable X;). An outline of the proof is as follows. First we prove that an upper bound
for (R Jmax 18 given by E Combining this with (3.8), we then see that X; =s; cannot be a zero
of R -1 if R;_150, for 2<j<¢t. This implies that the assumption that R0 (ie.
gcd(f b)=1) leads to R 0. We then apply a result from {6}, and we find with (3.9) that
R mod(p" Hp)#0. But this is a contradiction, because k mod(p*,H,) divides both
f mod(p" H,) and b mod(p" Hy) in W (F,)X;]. We conclude that R =0, so that
ged(f,b)5 1 in Q(a)[X}, Xy, ..., X, 1.

If @ and b are two polynomials in any number of variables over Q(a), having /, and J,
terms respectively, then

(3.10) (@) max < @ maxb maxmin(l,, I Y1+ F ) 7L

From (3.10) we easily derive an upper bound for (R Jmax> DECause R € Z[a][X +1, X +2,-., X ] is
the resultant of Df; ; and Db

(3.11) (R Jmax < (ij)m(pb 2 ax(n +m)yNn Ml (1 4 Fp )d ~Dntm=1),

It follows from f; = f; _1 mod(X; —s,), that (f; Jmax < (f; - Dmax(n; + )5/, s0 that

(312) (/o < LT 1

Combining (3.11), (3.12), and a similar bound for (b i Jmax> We Obtain

(313) B < Basb a7 +m)'(1>N21"12 Y (L F g+,
1

for 1<j <t. (Remark that (3.13) with ”<” replaced by <" holds for j = ¢.)

Now assume, for some j with 2<j <7, that R;_; is unequal to zero. We prove that
R 0. Because R R ~1mod(X; —s;), the condition R; = 0 would imply that all polynomials
m Z[X;] that result from R —1 by groupmg together all terms with identical exponents in « and
Xj+1 up to X, have (X;—s;) as a factor. These polynomials have degree (in X;) at most
(n +m)n;, so that we get, wnh the result from [12], that

Is; | < (@1 +m)n; + DAR; - pax-

Combined with (3.13) and (3.7) this is a contradiction with (3.8). We conclude that Rj #0 if
Rj—170 for any j with 2<j <{, so that the assumption ged(f,b) =1 (ie. R 50) leads to
R #0.
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Assume that H, (T) divides R(T) € Z[T] in (Z/ka)[T], ie. R mod(P ,H})=0. The polynomial

H, (T) is also a divisor of F(T) in (Z/p Z)[T], so that gcd (F(T), R(T)) =1 and [6: Theorem 2]
lead to

Pk8H< |F|I—1(I‘/&R )I

With the remark after (3.13) and (3.7) this is a contradiction with (3.9), so that
R mod(p ,Hy )5 0. This concludes the proof of (3.6). O

(3.14) Proposition. Let b,b,,...,by be a reduced basis for L (cf. [7: Section 1]), where L and M
are as in (3.5), and let

(.15) By = (n +m)(M2" 1y /2 | B DN (14 F ) ' T 5" Hm,
=2

Jor 2<j <1, where By is as in Section 2. Suppose that

(3.16) sj = ((n +m)n; +1)*B; _

for2<j <1, that

317 pkOH = |F |1~ 1U1%B,),

and that f does not contain multiple factors. Then

(3.18) (B max < (M2M 1B,

and h divides by, if and only if hg € L.

Proof. If h divides b, then hy € L, because b; € L; this proves the ”if”-part.

To prove the “only if”-part, suppose that ho € L Because h( is a monic factor of 1f
have from (2.7) that (h0)max < By- With [7: (1.11)] and hy € L this gives |b,| <M2M~ly4p
so that (3.18) holds, because (B))max < |b1|. Because of (3.18), (3.16), (3.17), (3.15), and the
definition of By, we can apply (3.6), which yields ged(f,b) 7 1.

Now suppose that ko does not divide b;. This 1mphes that A, _also does not divide
r =ged(f ,by), where r can be assumed to be monic. But then A mod(p*,H)) divides
(f /7)mod(p*, Hy ), so that Proposition (3.6) can be applied with f replaced by f /r. Conditions
(3.8) and (3.9) are satisfied because (f /r)yax < By (cf. (2.7)) and because of (3.16), (3.17), and
(3.15). It follows that ged(f/r,b;)71, which contradicts r = gcd(f,b,) because f does not
contain multiple factors. O

(3.19) We describe how to compute the irreducible factor # of f. Suppose that f does not con-
tain mult1p1e factors, and that the polynomial k, the (t —1)-tuple s,,53,...,5;, and the prime
power p are chosen such that (3.1), (3.2), (3.3), (3.4), (3.16), and (3.17) are satisfied with, for
(3.16) and (3.17), m replaced by n —1. Remember that we also have to take care that conditions
(2.1), 2.2), (2.3), (2.4), and (2.5) on p and H are satisfied.

We apply the basis reduction algorithm (cf. [7: Section 1]) to a sequence of M;-dimensional
lattices as in (3.5), where the M; = 1+I3/_;m;N; 1| run through the range of admissible values
for my,m,,...,m, (cf. (3.5)), in such a way that M; <M, (So, for m =1,1+1,...,n—1, and
m; =0,1,...,8;lc; _(f)fori =¢,t—1,..,2 In successmn) Accordmg to (3.14), the ﬁrst vector b,
that we ﬁnd that satisfies (3.18) equals +h0 (remember that b, belongs to a basis for the lattice),
so that we can stop if such a vector is found. If for none of the lattices a vector satisfying (3.18)
is found, then h is not contained in any of these lattices according to (3.14), so that kg = f.

(3.20) Proposition. Assume that the conditions in (3.19) are satisfied. The polynomial h can be
computed in O ((8,hoIN)*k logp) arithmetic operations on integers having binary length
O(INk logp).
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Proof. Observing that log(Isz") = O(k logp) (cf (3.17), (3.15), and (2.8)), the proof immedi-
ately follows from (3.19), (3.5), and [7: (1.26), (137 O

(3.21) We now show how s,,53,...,5, and p can be chosen in such a way that the conditisms in
(3.19) can be satisfied. The algorithm to factor f then easily follows by repeated application of
3.19).

( )We assume that f does not contain multiple factors, so that the resultant ‘R =R(df.df")
of df and its derivative df’ with respect to X; is unequal to zero. First we choose
$2,83-..,8; € Zq minimal such that (3.16) is satisfied with m replaced by n —1. It follows from
(3.16), (3.15), (2.8) and log D = O(logd +1 log(I | F|)) (because D =d |discr(F |), that

logs; = O(log((n +m)n;)+logB; )
= O(InN +n(log B +log D +1 log(1+ Fpg) +f 2:n,-logs,~ »
= O(n(IN +10g(df )+ I l0g(I | F | )+]: 2:n,~ logs,))
for2<j <1, so that
logs; = O(n(IN +108(df e+ I log(I | F | ))’iﬁ: (1+nn,))
and
(3.22) jzn,. logs; = O(n* ~2N (IN +10g(df ma) +1 log(I | F | ))).

From the proof of (3.6) it follows that, for this choice of 53,53,...,s; the resultant R € Z[a] of af
and df’ is unequal to zero.
_ Next we choose p minimal such that p does not divide D or discr(F), and such that
R #Z0modp. Clearly
I g9=<d discr(F)ﬁm
g prime, ¢ <p
which yields, together with
I g>e¥
q prime, ¢ <p
for all p >2 and some constant 4 > 0 (cf. [4: Section 22.2)), that
(3.23) p =0(ogd +110g(I | F|) +10gR ma).
Similar to (3.13) we obtain

. f 2n —1
Roax <[ s 'n"@n = 1) [szns;“ ] (14 F ) D21 =2),
i=2

so that we get, using (3.22)

10g Ry = O(n' "IN (IN +1og(df may) +1 log(I | F|))).
Combining this with (3.23) we conclude that
(324 P = 0" "INUN +1og(df pnay) +1 log(I | F 1))

Notice that (2.1) is now satisfied. In order to compute a polynomial H € Z[T] satisfying (2.2),
(24), (2.5), and (2.3) with k replaced by 1, we factor F modp by means of Berlekamp’s algo-
rithm [S: Section 4.6.2] and we choose H as an irreducible factor of Fmodp for which
R mod(p, H1)#0; such a polynomial H exists because R modp 540. Conditions (2.4) and (2.3)
with k replaced by 1 are clear from the construction of H, and because we may assume that H
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has leading coefficient equal to one, (2.2) also holds. The condition that discr(#)modp 50,
finally, guarantees that F modp does not contain multiple factors, so that (2.5) is satisfied.
We choose k minimal such that (3.17) holds, so that

t
klogp = O(I (InN +n log(df ,,) +1In log(I|F|) +n 3 n; logs;) + logp)
i=2

(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24)
(3.25) k logp = O(In' "\N(IN + log(df may) +1 log{I | F |))).

Now we apply Hensel’s lemma [5: Exercise 4.6.22] to modify H in such a way that (2.3) holds for
this value of k (this is possible because (2.3) already holds for k = 1), and finally we apply
Berlekamp’s algorithm as described in [1: Section 5] and Hensel’s lemma as in [14] to compute
the irreducible factorization of mod(pk,Hk) in W, (F,)X;]. Condition (3.4) is satisfied for
each irreducible factor A mod(p*, Hy) of f mod(p¥,H;) because R mod(p,H )70, and (3.1),
(3.2), and (3.3) are clear from the construction of A.

We have shown how to choose s5,,53,...,5, and p, and how to satisfy the conditions in
(3.19). We are now ready for our theorem.

(3.26) Theorem. Let f be a monic polynomial in :li—Z[a][Xl,Xz,...,X,] with t =2, of degree n; in
X, and 2<n=n,<n,<..<n. The irreducible factorization of f can be found in

O(n* “1UNYUN + log(df max) +1 log(I | F|))) arithmetic operations on integers having binary
length O (n' ~Y(INY(IN + log(df ma0) +1 log(I | F|))), where N =[] = (n; +1).

Proof. If f does not contain multiple factors, then f can be factored by repeated application of
(3.19). In that case (3.26) follows from (3.21), (3.20), (3.25), and the well-known estimates for the
application of Berlekamp’s algorithm and Hensel’s lemma (cf. [5; 1] and [16]).

If f contains multiple factors, then we first have to compute the monic ged g of f and its
derivative with respect to X, and the factoring algorithm is then applied to f/g. The cost of
factoring f /g satisfies the same estimates as above, because (f /g)pax < By (cf. (2.7)), and this
dominates the costs of the computation of g, which can be done by means of the subresultant
algorithm (cf. [2]). O
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